Number Bases
In base numbering system, numbers are represented using digits (0-9) and basic latin alphabet letters (from "A" to "Z" = 26 letters). In the converter, the input number base must have only digits [0-9] and letters [A-Z].
General Base Conversions
Converting between various bases of numbers is actually very easy, but the reasoning behind it can at first seem a little confusing. While you might find the subject of different bases to be somewhat trivial, the accessibly of computers and computer graphics has increased the need for information about how to work with different (non-decimal) base systems.
Base Number Systems Names
- 1 - unary
- 2 - binary
- 3 - ternary / trinary
- 4 - quaternary
- 5 - quinary / quinternary
- 6 - senary / heximal / hexary
- 7 - septenary / septuary
- 8 - octal / octonary / octonal / octimal
- 9 - nonary / novary / noval
- 10 - decimal / denary
- 11 - undecimal / undenary / unodecimal
- 12 - dozenal / duodecimal / duodenary
- 13 - tridecimal / tredecimal / triodecimal
- 14 - tetradecimal / quadrodecimal / quattuordecimal
- 15 - pentadecimal / quindecimal
- 16 - hexadecimal / sexadecimal / sedecimal
- 17 - septendecimal / heptadecimal
- 18 - octodecimal / decennoctal
- 19 - nonadecimal / novodecimal / decennoval
- 20 - vigesimal / bigesimal / bidecimal
- 21 - unovigesimal / unobigesimal
- 22 - duovigesimal
- 23 - triovigesimal
- 24 - quadrovigesimal / quadriovigesimal
- 26 - hexavigesimal / sexavigesimal
- 27 - heptovigesimal
- 28 - octovigesimal
- 29 - novovigesimal
- 30 - trigesimal / triogesimal
- 31 - unotrigesimal
- 32 vigesimal (already a popular name for this base)
- 33 triseptimal
- 34 bielevenary
- 35 unbielevenary
- 36 hexatridecimal / sexatrigesimal